
In many material science and condensed matter applications, the 
state of the system can be described entirely by a density matrix, 
which is a function of the system's Hamiltonian matrix,

= f H 
The Hamiltonian matrix is typically dense and structured (plane 
waves) or sparse (atomic orbitals, finite differencing). Here we 
focus entirely on the sparse case.

The traditional technique for finding the density matrix is to 
express the function in its spectral representation,

Recently, there has been a lot of work on linear scaling methods*, 
some of which evaluate the matrix function directly in a 
polynomial form,

but the polynomial degree needed for good accuracy is dependent 
on the function and the spectrum of the Hamiltonian and is in 
general prohibitively large. A more robust function representation 
involves approximating the contour integral definition of the 
function directly with a sum of matrix inverses,

The number of terms needed for a given accuracy in this 
expansion is completely insensitive to the spectrum of the 
Hamiltonian. We only need diagonal and near diagonal terms of 
the density matrix, so these material simulations are completely 
reduced to finding O(N) terms of the inverse of NxN  sparse 
matrices, as opposed to the usual eigenvalue formulation.
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The motivation for working on this problem comes from numerous 
successes in related problems:

• In one dimension, local differential equations can be 
approximated by banded matrices with a bandwidth independent 
of problem size. An NxN  banded matrix of bandwidth q  can be 
exactly inverted in O(qN) space and O(q2N) computation1. We 
can understand this easily in terms of the continuum problem – a 
qth  degree differential equation has q  homogeneous solutions, 
which we can patch together over the delta function that is used 
to define the inverse of the differential operator. Higher 
dimensions are problematic because there is a large space of 
homogeneous solutions. In a matrix representation, this translates 
to the bandwidth of the matrix being proportional to the system 
size. Any multidimension extension would require some compact 
approximate representation of all the homogeneous solutions.

• In the context of multigrid methods, there has been some success 
in quickly and compactly representing the inverse of elliptic 
differential operators by successively solving for details of the 
inverse on different resolutions/scales2.

• Sparse approximate inverses to general sparse matrices have been 
investigated3, in both factored and unfactored forms. They are 
constructed as preconditioners and as such they emphasis 
sparsity over accuracy.  No efficient, compact high accuracy 
results have yet been reported.
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The motivation for working on this problem comes from numerous 
successes in related problems:

• Reduction techniques can successively remove unknowns from 
a system, by transforming to a similar but less sparse system of 
half the size, but they fail to be compact in the presence of 
oscillations1.

• “Superfast” nested dissection can compactly factor a 
discretized differential operator by exploiting low-rank 
behavior of long range details (off-diagonal blocks of the 
factorization)2. Again, as yet no clear success in the presence 
of oscillations3.

• Fast multipole methods4  can compactly represent an 
analytically known inverse kernel by partitioning space and 
collectively representing far away groups of source points, 
carefully removing unnecessary detail by truncating 
appropriate function expansions. Success for the Helmholtz 
integral kernel demonstrates that oscillations aren't necessarily 
an Achilles heel of fast, compact solvers.

• Hierarchical matrices5  are a framework for applying fast 
multipole-like principles to problems represented with 
matrices. Specifically, they demonstrate that inverses of elliptic 
operators have locally low rank, which leads to efficient 
compact storage. These methods have not yet been extended to 
non-elliptic operators/oscillatory integral kernels.
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We start our analysis as generally as possible by saying that we 
have a multidimensional differential operator,     , and it has an 
inverse,                   , that is continuous in both its variables and 
satisfies the equation

with the operator acting only on   . For a fixed source point,     , 
this is just a single differential equation with a single source 
function.

Let us now imagine that we have an optimal solver and the only 
problem is compact storage. We have a discrete representation of 
the space at N  points, and so the solution given a single source 
point is contained in N  terms. If we want the diagonals of the 
inverse (ignoring that this diverges in the continuous problem), 
even with an optimal solver, we end up having to solve from N
sources, inevitably doing O(N2) work intermediately. The trick to 
making use of an optimal solver is to solve an equation whose 
solution is known to decay rapidly, so that we can solve on a 
restricted domain whose size is independent of N. For some 
problems, the inverse decays exponentially away from the 
diagonal, but the more generic behavior is a power law decay, 
which isn't rapid enough.

Without any knowledge of the specific problem, all we can do to 
start is choose a source point,   , and solve for the inverse from 
this point. In the next step, we can begin to attempt a more local 
calculation by examining the inverse at a point infinitesimally 
close to the first source point and expanding it as a Taylor series 
around the first point (keeping in mind its continuity),
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Given some restricted domain containing    , we can find a       small 
enough that the difference is negligible outside the restricted 
domain. This is the only useful piece of information we can get from 
the equation, since the Taylor series will diverge near the 
singularities at the two source points. We turn to our optimal solver 
to fill in the details, by solving

on the previously mentioned restricted domain. We now have the 
inverse from this second source point to some accuracy determined 
by the size of the restricted domain and infinitesimal step,

Now that we have the inverse from two source points, we can look 
for the inverse from a third infinitesimally close source point 
colinear with the previous two and this time use two Taylor series 
and cleverly combine equations,

which cancels the first order error term of our extrapolation. Now, 
with a similarly sized restricted domain, we can choose a larger 
displacement and still have the difference be small on the boundary. 
We can then use the optimal solver again to find the difference 
within the domain. In general, with each step, we can cancel higher 
orders in a Talyor series and find better extrapolations and solve for 
increasingly farther source points in the form

which serves to illustrate the notion of locally low rank: the farther 
away from  , the fewer local detail patches   we'll intersect. 
However, we rely on our ability to extrapolate, which requires 
knowledge of a continuum underlying a discrete problem, and is 
held at the mercy of radii of convergence and analycity issues.

A f 1 r =r−r0−d r −r−r0

d rr0

A−1r , r0d r =A−1r , r0 f 1r O 

A−1r , r0d r ' −
∣d r '−d r∣A−1r , r0∣d r '∣A−1r , r0d r 

∣d r '−d r∣∣d r '∣
=O ∣d r '∣2

A−1 r ,r ' =c0 A−1r , r0∑
i=1

ci f i r 

r0 f i



It would certainly be useful to exploit generic properties of the 
inverses of differential operators, since they are similar to generic 
properties of sparse matrices, such as exponential decay of 
offdiagaonals of band matrix inverses*, but we must avoid any 
reference to a continuum in the solution method itself.

For Laplace's equation, for example, we can physically motivate a 
solution method that possesses the same locally low rank as the 
previous extrapolation concept without directly exploiting 
continuity. We again imagine that we have discretized our domain 
to a size N and that we have access to an optimal solver, and we will 
enumerate all the points of the domain as    , order to be 
determined.

We again begin by solving for the inverse from the first source point, 
but this time, we'll attempt to approximate the whole inverse with 
this one solution,

ignoring the possible singularity of the inverse on the diagonal and 
making use of the symmetry of the inverse. Now, this is a terrible 
approximation of the inverse unless either variable is at the initial 
source point, in which case it is exact. We again continue by using 
the inverse from one point to modify the calculation of the next 
point, this time making use of the one point both functions share,

defining what we'll call a screened inverse function, whose utility 
isn't immediately obvious. This screened inverse satisfies the 
differential equation with an added interior boundary condition,
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We can then update our approximate inverse to be correct also at 
this second point,

To continue this process, we define a more general screened inverse 
function,

which again satisfies the differential equation with an increasing 
number of interior boundary conditions,

With all the screened terms taken together, we can exactly write the 
inverse as

which is in a form very analogous to a Cholesky factorization of the 
inverse. This connection will be exploited to solve these equations.

Before we try to solve anything, we must examine the behavior of 
the screened inverse functions to see how they can help us. This 
sort of equation might arise in a physical system where you have an 
electric charge at the source point and grounded metal antennas at 
all the screened points. We know that in such a system, the 
potential generated by the charge will exponentially decay with a 
characteristic distance inversely proportional to the density of 
screening points (to the Dth root in D dimensions),

for a uniform/random/space filling distribution of screening points.

A−1r ,r ' ≈
A−1r , r1A−1 r1, r ' 

A−1 r1, r1


A−1r , r2
A−1 r2, r ' 

A−1 r2, r2

A−1r , r i≡A−1r , r i−∑
j=1

i−1
A−1r , r j

A−1  r j , r i
A−1  r j , r j

A A r , r i=r−r i with A  r j , r i=0∀1≤ ji

A−1 r ,r ' =∑
i=1

N A−1r , r i
A−1 r i ,r ' 

A−1 r i , r i

A−1r , r i∝exp− i
N 

1 /D

∣r−r i∣



If we choose a fixed precision, , then we can restrict the screened 
inverse functions to a small active domain,

which leads to a representation of the total inverse that is within a 
log of optimal,

In terms of numerical linear algebra, we expect the Cholesky 
factorization of the inverse of a sparse matrix to be sparse to a finite 
numerical precision for certain orderings (such as a random 
ordering), at the very least for the case of a discretized Laplace 
equation.

We can now relax our condition of having an optimal solver 
because we can just solve the screened inverse functions in reverse, 
starting from the most screened, and use those answers to calculate 
the inverses of the successively less screened problems. In terms of 
matrices, this can be performed as a succession of rank one updates 
using the Sherman-Morrison formula or more simply by 
orthogonalizing a set of unit vectors with respect to the A  matrix 
such as in the AINV algorithm*.

At this point, we'll stop with continuum arguments and mostly focus 
on the problem in terms of numerical linear algebra. A is no longer a 
differential operator, but rather a matrix approximating the operator 
using a finite difference representation.
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Our goal now is to find a matrix factorization of the form                 
 which will allow us to represent the inverse of A  in a factored 
form,                 . If we consider the columns of B  as separate 
vectors,    , then we can think of this process as orthogonalizing a 
set of vectors with respect to A. Given an initial set of N
vectors,     , we can perform an incomplete classical Gram-Schmidt 
orthogonalization procedure

We must be wary of the diagonal terms becoming too small, which 
would signify a bad choice of initial vectors, and also of the 
instabilities of the classical Gram-Schmidt procedure if   is set 
close to the machine precision. To perform this process efficiently, 
we make use of a sparse vector data structure. For the Laplace 
equation on a 2D unit square represented by 100x100 5-point 
finite differencing grid and using randomly ordered basis vectors, 
we clearly see the predicted screening behavior:
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N=10000
nnz A=49600
nnz B=5821598
fillin=117
=10−5

∥ABBT− I∥2=1.2 x 10−3

Predicted envelope
Calculated columns



Random ordering is useful because it avoids intersections with 
previously orthogonalized vectors on average. This is only true when 
applied to a  matrix with roughly the same number of nonzero 
elements per column. A more general ordering is to just choose a 
new vector at each step of the orthogonalization that intersects as 
few previous vectors as possible. This avoided ordering exibits the 
same behavior as the random ordering, with some improvement:

We will now just use the avoided ordering, since it performs better.

Since previous work on factored sparse approximate inverses has 
focused on very low fill and/or very low drop tolerance, it is useful 
to study the 2-norm of the error in this limit,

The typical case of forcing B to be approximately as sparse as A 
leads to a very poor inverse, which can be substantially improved in 
this example with a factor of 10 increase in the fill.

Random Ordering
Avoided Ordering

N=10000
=10−5

Random :
nnz B=5774149
∥ABBT− I∥2=1.2 x 10−3

Avoided :
nnz B=3491661
∥ABBT− I∥2=1.8 x 10−4



This simple, physically motivated method unfortunately has a 
simple, physically motivated difficulty:  for a given domain and 
tolerance, as we successively solve for columns of B and “undo the 
screening”, it can very well happen that the localized active region 
can grow beyond the extent of our domain. For the rest of the 
calculation, the vectors of B  will be dense and if the number of 
these vectors has some polynomial dependence on the size of the 
system, then this method is no longer optimal. This now sets a limit 
on how accurate we are allowed to be within this framework. We 
can clearly see this transition in a plot of column sparsities,

The maximally accurate but still “screened” choice above isn't 
accurate enough to serve directly as an inverse, but it is accurate 
enough to make for a good preconditioner – a lesser but still very 
desirable quality.

=10−7 ,∥ABBT− I∥2=8.3 x10−7

=10−2 ,∥ABBT− I∥2=0.22
=1,∥ABBT− I∥2=0.96



This method as currently formulated isn't numerically competative 
with any existing methods or representations of inverses, such as 
Hierarchical matrices or Total Reduction, in terms of either speed 
or accuracy. However, it suggests  paths for improvement that 
might eventually be competative:

• The B matrix we are solving for doesn't need to be a triangular 
matrix, since we are avoiding matrix solves.  Related to this, 
we  can start the inversion process from an arbitrary set of 
vectors. If we choose anything other that the basis vectors, we 
will inevitably have more non-zero overlaps between the 
vectors we are orthogonalizing, but we might reduce the 
overall weight of these couplings, which can lead to a 
stronger decay of terms and more opportunity for truncations 
at later stages of the calculation.

• The B matrix starts out very sparse and only the later columns 
fill in very densely. To avoid the calculation of the dense 
columns, we can stop the orthogonalization process midway 
and transform the intermediate matrix,

which allows us to restart the inversion process on a matrix of 
smaller size but increased density.
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WORK IN PROGRESS...


