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Application I
Lest-square fitting

e Sampled data with experimental
uncertainties.

e Least-square fitting by a hyper-plane.

e Variance of fitted parameters is given by the
diagonal of the inverse of the normal matrix.

Uz(aj) ~ Mj_jl
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Application II
Figenvalues of tri-diagonal matrices

e (alculation of eigenvectors with inverse iteration.
e Suppose we start the first iteration with vector e,

(T— S\I)Zk — €L

e Are all choices of e, equivalent?
e Wilkinson 1958: no.

— Accuracy of approximation varies depending on k.

e Often it suffices to choose k such that the (k,k) entry of
(T — X))~ 1

has the largest value among all diagonal elements.
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Application III
Sensitivity estimation

e How accurate is the solution z of
Axrx = b

— in the presence of round off errors?
— uncertainties in A or b ?
e Answer depends on the condition number of A

Al 1A7H

e (ondition number can be estimated by computing only part of
the inverse.
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Application IV
Transport in nano-structures
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Nano-transistor: Non Equilibrium Green’s
Function Approach
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of interest:

Numerical Linear Algebra

2D Schroédinger

. 4mm Right Lead

Gr :A—l
G =A"1x< AT

From the diagonal of G" and G, we can calculate all the quantities

e clectron density n,

2<:

Problem

Scattering

e current, I-V characteristics, density of states...
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Nested Dissection

e We want to solve: Az = b
e Introducing a permutation matrix P we could equivalently solve:

(PAP")(Px) = Pb

e A clever choice of P can often reduce fill.

e Using nested dissection:
— Computational cost is reduced to O( 2 r) [N=sr]
— Memory requirement to O(sr log(sr))
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Sparsity pattern of A and L
with nested dissection numbering
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Takahashi’s relationships

e Takahashi, Fagan and Chin (1973):
A= LDU GT=A"1
Gr=D 1L 1+ u-v)ar
Gr=U"1D"14+G"u-10L)

e¢ From which:
9ij = — Y Wikzkj, 1<
k>
9 = = ) Ziklkj, 1>
k>
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Graph of (L\U)”

Zij = — Z Wik Zkis L <]
k>1

e Not all entries z; need to be computed.
e Only those that belong to the graph of (L\U)7,
e Proof: F' graph of (L\U)

{j >, (j,i) € F

= ,k) € F
k>i,(i,k) € F (s k)

e Produces all z,with (4,j) € (L\U)*
e C(Cost of procedure is the same as nested dissection:
O(s* r) [N=sr]
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G =A"1 a1
Part 1

e Takahashi’s relationships do not lead to an efficient method.
e (G<(n,n) can be computed efficiently with nested dissection!

e Consider step k of Gaussian elimination applied to: AG <Al =7

) SN .

ALk) :AQQ—DL%L(k+ 1:n,k)U(k,k+1:n)

03/13/04 Eric Darve 12/18
Bay Area Scientific Computing Day




Update of right-hand side R(k)
R(F) —

g

RSY = Roo — L(k+ 1 :n,k) Rio(k,:) — Roa (5, k) L(k+ 1 : n, k)1
+ Ri1(k, k) L(k+1:n,k)L(k+1:n,k)

e Theorem: if F(LT) C F(U), i.e.
U(k,j)=0 = L(jk)=0

Then: F(R,,®) C F(A,,")

e Corollary: elimination process takes O(s? r) operations.
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Calculation of G=(n,n)

G<

G<(n,n) = R(n,n)

Can we compute G=(i,2) for any 4 7
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Part 11
Elimination tree

e Step 1: upward pass. “Inner” nodes are eliminated.
e Step 2: downward pass. “Outer” nodes are eliminated.

e Based on a tree structure.
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Step 1: eliminate “Inner” nodes

e Upward pass in the tree.
e Cost: O(s r).

e Note the difference with traditional nested dissection: each
“separator” consists of two parallel grid lines.

03/13/04 Eric Darve 16/18
Bay Area Scientific Computing Day



Step 2: eliminate “Outer” nodes
% % |
T EE T

» Final phase: we are left with rs 1x1 linear systems.
« Total cost of algorithm: O(s? r).

03/13/04 Eric Darve 17/18
Bay Area Scientific Computing Day



Conclusion

e Non-Equilibrium Green’s Function approach:
powerful and flexible approach to modeling nano-
transistors.

e Fast numerical methods developed in 2D.
Cost O(s? 7).

e Algorithm is parallel.

e Cost in 3D is larger: O(s*r q).

e Other possible strategies:

— Lanczos procedure? (shown to work for (ATA)1)

— Total reduction? (shown to work for Laplace)
— Multigrid?
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