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Application I
Lest-square fitting

• Sampled data with experimental 
uncertainties.

• Least-square fitting by a hyper-plane.
• Variance of fitted parameters is given by the 

diagonal of the inverse of the normal matrix.

σ2(aj) ≈M−1jj
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Application II
Eigenvalues of tri-diagonal matrices

• Calculation of eigenvectors with inverse iteration.
• Suppose we start the first iteration with vector ek

• Are all choices of ek equivalent?
• Wilkinson 1958: no.

– Accuracy of approximation varies depending on k.
• Often it suffices to choose k such that the (k,k) entry of

has the largest value among all diagonal elements.

(T − λ̂ I)zk = ek

(T − λ̂I)−1
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Application III
Sensitivity estimation

• How accurate is the solution x of

– in the presence of round off errors?
– uncertainties in A or b ?

• Answer depends on the condition number of A

• Condition number can be estimated by computing only part of 
the inverse.

Ax = b

||A|| ||A−1||
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Application IV
Transport in nano-structures

Fuhrer et al, Science (2000)Nano-transistor

DNA
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Nano-transistor: Non Equilibrium Green’s 
Function Approach

Nanodevice LeadLead drainsource

gate
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Poisson Equation
n → U

Equilibrium Statistical
Mechanics
H,U → n

∇ · (²∇U) = q2[Nd − n]

[H +U ]Ψα(r) = ²αΨα(r)



Numerical Linear Algebra Problem

A =

Left Lead

Right Lead

2D Schrödinger

Σ< =

Scattering

Gr = A−1

G< = A−1 Σ< A−†

From the diagonal of Gr and G<, we can calculate all the quantities 
of interest:

• electron density n, 
• current, I-V characteristics, density of states…
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Nested Dissection
• We want to solve:
• Introducing a permutation matrix P we could equivalently solve:

• A clever choice of P can often reduce fill.
• Using nested dissection:

– Computational cost is reduced to O(s2 r) [N=sr] 
– Memory requirement to O(sr log(sr)).

Ax = b

(PAPT )(Px) = Pb

Example of mesh 
transformation 

rules
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Sparsity pattern of A and L
with nested dissection numbering
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Takahashi’s relationships

• Takahashi, Fagan and Chin (1973):

• From which:

A = LDU Gr = A−1

Gr = D−1L−1 + (I − U )Gr
Gr = U−1D−1 + Gr(I − L)
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grij = −
X
k>i

uikzkj , i < j

grij = −
X
k>i

ziklkj , i > j



Graph of (L\U)T

zij = −
X
k>i

uikzkj , i < j

• Not all entries zij need to be computed.
• Only those that belong to the graph of (L\U)T.
• Proof: F graph of (L\U)

• Produces all zij with (i,j) ∈ (L\U)T

• Cost of procedure is the same as nested dissection:
O(s2 r) [N=sr]

⎧⎨⎩j > i, (j, i) ∈ F
k > i, (i, k) ∈ F ⇒ (j, k) ∈ F
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G< = A−1 A−†
Part I

• Takahashi’s relationships do not lead to an efficient method.
• G<(n,n) can be computed efficiently with nested dissection!
• Consider step k of Gaussian elimination applied to:

G<

AG<A† = I

=

⇓
A
(k)
22 = A22 −

1

Dkk
L(k + 1 : n, k) U (k, k + 1 : n)
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Update of right-hand side  

⇓
R
(k)
22 = R22 − L(k + 1 : n, k)R12(k, :) − R21(:, k) L(k + 1 : n, k)†

+ R11(k, k)L(k + 1 : n, k)L(k + 1 : n, k)
†

R(k) =

R(k)

• Theorem: if F(LT) ⊂ F(U), i.e.

Then: F(R22
(k)) ⊂ F(A22

(k))
• Corollary: elimination process takes O(s2 r) operations.

U(k, j) = 0 ⇒ L(j, k) = 0
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Calculation of G<(n,n)

G< =

G<(n, n) = R(n, n)

Can we compute G<(i,i) for any i ?
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Part II
Elimination tree

• Step 1: upward pass. “Inner” nodes are eliminated.
• Step 2: downward pass. “Outer” nodes are eliminated.
• Based on a tree structure.
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Step 1: eliminate “Inner” nodes

• Upward pass in the tree.
• Cost: O(s2 r).
• Note the difference with traditional nested dissection: each 

“separator” consists of two parallel grid lines.
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Step 2: eliminate “Outer” nodes

• Final phase: we are left with rs 1×1 linear systems.
• Total cost of algorithm: O(s2 r).
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Conclusion
• Non-Equilibrium Green’s Function approach: 

powerful and flexible approach to modeling nano-
transistors.

• Fast numerical methods developed in 2D. 
Cost O(s2 r).

• Algorithm is parallel.
• Cost in 3D is larger: O(s4 r q).
• Other possible strategies:

– Lanczos procedure? (shown to work for (ATA)-1)
– Total reduction? (shown to work for Laplace)
– Multigrid?
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