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Motivation

Modify Geometry

Mesh

Flow Solve

Optimizer

• Structured- and unstructured-mesh methods

• Euler and Navier-Stokes analysis

• Complex geometry ⇒ Cartesian methods
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Research Goals

Develop an automated optimization capability
for complex-geometry aerodynamic design

• Optimization of “real-life” geometry

• Remove restrictions on small design changes

• Modular, responsive, and flexible framework

• Emphasis on parallel efficiency

→ Potential for superior and unconventional designs←
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Geometry Modeling and Control

• Leverage capabilities of parametric-CAD systems

– Generality: real-life geometry

– Consistency: no geometry translation⇒ CAD-to-CAD design

– Natural Constraints: capture design intent

• Important issues

– Dependence on proprietary CAD kernel

– Differentiability and mesh-perturbation approaches

– Interface is dependent on specific CAD system
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CAPRI

Computational Analysis and PRogramming Interface

⇒ Robert Haimes (MIT)

⇒ Vendor-neutral CAD interface

1. Geometry Regeneration

• Allows direct manipulation of built-in CAD-model parameters

• Different instances of parts are realized from generic models

2. Triangulation

• Automated “water-tight” triangulation of solids

Used directly for Cartesian mesh generation
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CAPRI

2−D Sections
B−spline Curves

Modify and
Regenerate

Triangulate

CAD/CAPRI

Two instances of a generic-wing CAD model

Right-triangle tessellation
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Volume Mesh Generation

Strategy:

I. Component-based geometry approach

II. Embedded-boundary Cartesian mesh generation
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Volume Mesh

Component-based geometry approach

1. Components are intersected to define a wetted-surface

• This operation is performed outside the CAD system and is

based on component triangulations

• Fast and robust intersect algorithm

2. Caching of component triangulations

• Associated triangulations are stored by CAPRI

• Tag rigid-body motion and unchanged components

• Minimize number of re-triangulations
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Component Geometry
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Volume Mesh

Embedded-boundary Cartesian Mesh Generation

• De-coupling of surface mesh from volume mesh

• Automated, fast, and robust mesh generator

– Arbitrarily complex geometry

– Generate new mesh for each design modification

∗ Allows large shape deformations and topology changes

∗ Avoids use of mesh-perturbation schemes
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Volume Mesh
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Flow Solver

• Governing equations: three-dimensional Euler equations

• Embedded boundary: body-intersecting cut-cells

• Spatial discretization: van Leer’s flux vector splitting combined

with Minmod or Venkatakrishnan’s limiters

• Multigrid convergence acceleration

• Use of space-filling curves for domain decomposition

Parallel, scalable, and robust flow solver
for complex geometry
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Surface Pressure, M∞ = 2.5, α = 2.0◦

Courtesy of M. Aftosmis and S. Murman
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Optimization Algorithms

• Genetic algorithm

• Quasi–Newton method with a backtracking line-search

and central-difference gradient computations

Optimization Framework Synthesis

• Producer–Consumer Interface

1. Scalable geometry server: CAD/CAPRI modules

2. Geometry clients: Mesh-Generator/Flow-Solver modules

Sustain performance even when only a few (or one)

CAD licenses are available
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Framework

Geometry ClientsGeometry Servers

Optimization Case 1

Optimization Case 2

Optimization Case K

Large Parallel Computers

CAD Request
Repository

(Storage Disk)
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Storage of CAD
Parts and Assemblies

Node 1
CAD & CAPRI

Node 2
CAD & CAPRI

Node N
CAD & CAPRI
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Framework

Geometry 1

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Cart3D Analysis
(Flow Solve)

64 CPUs

Optimizer

 Geometries
      2 ... K

Geometries
K+1 ... N

Dynamic re-allocation of processors to mask latency of
CAD-geometry processing
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Wallclock Time

Part CAD (sec.) Triangulation (sec.)

Fuselage 2.0 93.3

Wing 3.0 16.5

Cart3D Wallclock Time (sec.)

Mesh Generation (1.5 million cells) 132.0

Flow Solution (64 CPUs) 455.0
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Results

2-D Design Example

• NACA 0012 airfoil: generic-wing CAD model

• Freestream Mach number=0.7, and angle of attack=3.0 deg.

• Validate optimization infrastructure

1. CAD interface and optimization algorithms

2. Study of noise in the objective function

• Lift-constrained drag minimization

– Design Variables: 2 B-spline Control Points and Angle of attack
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2-D Design

Design Iterations
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Results

3-D Design Example

• Objective: Trim configuration at fixed lift

• Design Variables: Control surface horizontal position, aspect ra-

tio, and twist

– Additional D.V.: Control surface area for genetic algorithm

– Possible topology changes
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Results

Design Iteration
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Pitching moment reduced by approx. 2 orders of magnitude
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Results

Quasi–Newton algorithm: Initial Design
Surface Mach number, M∞ = 0.85, α = 1.0◦
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Results

Quasi–Newton algorithm: Final Design
Surface Mach number, M∞ = 0.85, α = 1.0◦
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Results

Genetic algorithm: Final Design
Surface Mach number, M∞ = 0.85, α = 1.0◦
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Conclusions

• Validated optimization infrastructure

1. Geometry representation via parametric-CAD models

2. Direct CAD-system interface using CAPRI

3. Parallel geometry server

4. Component-based Cartesian method

• Fully automated for complex geometry

• Explored designs with shape and topology changes

Future Work

• Application to “real-life” problems, noise issues

• Advanced optimization methods
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